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Direct stability analysis and numerical simulations have been employed to identify
and characterize secondary instabilities in the wake of the flow around two identical
circular cylinders in tandem arrangements. The centre-to-centre separation was varied
from 1.2 to 10 cylinder diameters. Four distinct regimes were identified and salient
cases chosen to represent the different scenarios observed, and for each configuration
detailed results are presented and compared to those obtained for a flow around an
isolated cylinder. It was observed that the early stages of the wake transition changes
significantly if the separation is smaller than the drag inversion spacing. The onset of
the three-dimensional instabilities were calculated and the unstable modes are fully
described. In addition, we assessed the nonlinear character of the bifurcations and
physical mechanisms are proposed to explain the instabilities. The dependence of the
critical Reynolds number on the centre-to-centre separation is also discussed.

1. Introduction
When two or more bodies are in close proximity and immersed in a fluid stream,

the forces experienced by these bodies and the flow field that surrounds them are
significantly different from those that are observed when either body is isolated in the
same fluid stream. The effect of the presence of other bodies in the flow is called flow
interference, and it has crucial importance in aerodynamics and hydrodynamics. One
of the most severe types of interference is wake interference, which happens when
a body is placed behind another in relation to the free stream. In such situations,
the flow impinging on the downstream body is usually completely different from
the free stream. The flow around two identical circular cylinders of diameter D in
tandem arrangements, separated by a centre-to-centre distance Lx is a very useful
model to study wake interference (figure 1). This configuration is simple in geometry,
but complex in terms of flow phenomena at low Reynolds numbers, since the flow
reaching the downstream cylinder is unsteady and has a dominant frequency; in
addition, different vortex shedding regimes are observed depending on the distance
between the bodies.

Early scientific works on wake interference in the flow around bluff bodies can be
traced back to the first half of the twentieth century. They were mainly concerned
with the forces on structural components in tandem arrangements, as, for example,
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Figure 1. Sketch of the flow around two circular cylinders in tandem arrangement.

the work of Biermann & Herrnstein Jr (1933). One of the most important features
of the flow around circular cylinders in tandem was identified in these papers:
the discontinuity in the value of the aerodynamic forces when the centre-to-centre
distance is varied continuously. The separation for which this discontinuity appeared
was named critical spacing or critical separation, and it was soon evident that it
depends on the Reynolds number. It is also common to refer to this separation as
drag inversion separation, since the drag on the downstream cylinder is usually negative
in relation to the free-stream direction for separations shorter than the critical and
positive for separations larger than the critical (from this point on, the term drag
inversion will be used in order to avoid confusion, since the term ‘critical’ is used
to refer to the Reynolds number at the onset of the secondary instabilities). Later,
experimental results were published which relied on flow visualization to explain
some of the physics associated with wake interference. Thomas & Kraus (1964) tested
different centre-to-centre distances under the same Reynolds number (Re = 62), and
observed that the vortices in the wake behaved differently according to the distance
between the cylinders. Zdravkovich (1972) extended this by changing the Reynolds
number as well as the centre-to-centre distance. He observed that the transition to
turbulence in the wake seemed to occur later in terms of Reynolds number if the
spacing was less than the drag inversion separation.

Later publications on the flow around circular cylinders in tandem started to focus
on the classification of different flow regimes depending on Reynolds number and
centre-to-centre distance. Each flow regime was associated to a wake configuration
and aerodynamic force behaviour. Well-regarded examples of this kind of publication
are Zdravkovich (1977), Igarashi (1981) and Zdravkovich (1987). Although the
classifications differed in the level of detail presented, all agreed on the existence
of the above-mentioned discontinuity in the aerodynamic forces, and that this was
associated to a very significant change in the vortex configuration in the wake.

The first computational works on tandem arrangements aimed to reproduce these
flow regimes by means of numerical simulations. Diverse two-dimensional methods
were used, including the discrete vortex method (Slaouti & Stansby 1992) and the
finite element method (Mittal, Kumar & Raghuvanshi 1997; Meneghini et al. 2001).
In general, their research reproduced the regimes qualitatively, and were successful
in clearly showing that the drag inversion separation also depended on the Reynolds
number due to the change in the formation length with the variation of this parameter,
particularly when the flow is two-dimensional. However, they failed to quantitatively
match the drag inversion separation with the experimental results for Re � 200,
because of the presence of three-dimensional structures in the real flow for such
Reynolds numbers.

Recently, more sophisticated studies employed stability theory to approach the
problem. Mizushima & Suehiro (2005) investigated the stability and transition of the
steady flow around two circular cylinders in tandem by means of numerical simulation
and stability analysis. Their results, showed that the presence of the second cylinder
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downstream stabilized the flow, and the transition from steady to time-periodic
flow occurred at a higher Reynolds number when compared to the transition to
time-periodic flow around a single cylinder. They also showed that, for centre-to-
centre distances between 3.0D and 4.0D, the origin of the abrupt change in integral
quantities, such as the drag coefficient and Strouhal number, was the existence of
multiple stable solutions of the flow. The existence of these different stable solutions
led to hysteresis and, depending on the centre-to-centre distance, saddle node or
subcritical bifurcations were observed. This is significantly different from the isolated
cylinder case, in which the primary instability is a Hopf bifurcation (two-dimensional
steady to two-dimensional unsteady) of supercritical character. Later, Tasaka et al.
(2006) reproduced some of the findings of Mizushima & Suehiro (2005) in experiments
in a water channel. In 2006, three works using three-dimensional direct numerical
simulations of the flow around tandem arrangements were published independently,
almost at the same time. Deng et al. (2006) employed the virtual boundary method to
perform two- and three-dimensional simulations of selected configurations. Their main
conclusion was that the transition to three-dimensional flow in the wake was delayed
if the cylinders were separated by a distance smaller than the drag inversion spacing.
Carmo & Meneghini (2006) performed two- and three-dimensional simulations for
diverse centre-to-centre distances at Reynolds numbers in the range of early wake
transition (160 < Re < 320). Using Strouhal number data and vorticity contours, it
was concluded that the presence of three-dimensional structures affected the flow
in different ways, depending on the interference regime. For small centre-to-centre
distance (Lx/D = 1.5), no significant differences were observed in the forces on
the bodies when comparing the two- and three-dimensional results. For Lx close
to the drag inversion separation, the two- and three-dimensional results were
completely different: for two-dimensional simulations the drag inversion occurred for
3.0 � Lx/D � 3.5 in the Reynolds number range investigated, whereas for the three-
dimensional results the drag on the downstream cylinder was always negative for these
Lx . Finally, for configurations in which the vortices detached from the upstream cylin-
der before impinging on the downstream cylinder, the three-dimensional structures had
the same effects on the forces on the pairs of cylinders as they did on a single cylinder,
suggesting that the early wake transition route was the same for these arrangements as
for the single cylinder. In order to identify the effects of three-dimensional structures
and cylinder spacing, Papaioannou et al. (2006) also performed two- and three-
dimensional simulations of the flow around two circular cylinders in tandem. They
observed that two-dimensional simulations under-predicted the drag inversion spacing.
In addition, they noticed that, for three-dimensional fluctuations, the presence of the
downstream cylinder at centre-to-centre distances less than the drag inversion spacing
had a stabilizing effect, whereas if the downstream cylinder was placed at a distance
greater than the drag inversion spacing, it had a destabilizing effect.

Although these investigations have indicated that the presence of three-dimensional
structures greatly affects the observed flow regime and that, depending on the centre-
to-centre distance, the three-dimensional structures in the wake can be considerably
different from those observed in the flow around a single cylinder, no paper has
yet fully characterized the modes, mechanisms and onsets of the three-dimensional
instabilities in the time-periodic wake of the flow around circular cylinders in tandem
arrangements. The goal of the present work is to use asymptotic stability theory and
direct numerical simulation to study the early stages of the wake transition for different
geometrical configurations, which were chosen according to the two-dimensional flow
regime observed.
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This paper is organized as follows. First, in § 2, we present the numerical tools
used in the present work. In § 3 a summary of previously published results regarding
the flow around an isolated cylinder is given as a benchmark for the new data on
the flow around tandem arrangements. Details of the calculations performed are
given in § 4 and the results are presented and analysed in § 5. Further discussion
on the relationship between centre-to-centre separation, secondary instabilities and
respective physical mechanisms is presented in § 6. Finally, in § 7, the main findings
are summarized and conclusions regarding their implications are drawn.

2. Numerical method
2.1. Linear stability analysis

The method employed for the linear stability calculations in this paper consisted in
testing the stability of two-dimensional time-periodic flows, which are called base
flows, to three-dimensional infinitesimal perturbations, using Floquet theory. The
base flows were obtained by means of two-dimensional numerical simulations of the
incompressible Navier–Stokes equations, here written in non-dimensional form:

∂u
∂t

= −(u · ∇)u − ∇p +
1

Re
∇2u, (2.1)

∇ · u = 0. (2.2)

The cylinder diameter D is the reference length and the free-stream speed U∞ is the
reference speed used in the non-dimensionalization. u ≡ (u, v) is the velocity field,
t is the time, p is the static pressure, Re = ρU∞D/μ is the Reynolds number and
μ is the dynamic viscosity of the fluid. The pressure was assumed to be scaled by
the constant density ρ. The numerical solution of these equations was calculated
using a spectral/hp discretization as presented in Karniadakis & Sherwin (2005). The
time integration scheme adopted was the stiffly stable splitting scheme presented by
Karniadakis, Israeli & Orszag (1991).

For the stability calculations, a bi-global direct stability analysis methodology
similar to that utilized in Barkley & Henderson (1996) was employed. The two-
dimensional T -periodic base flows U(x, y, t) were tested against an infinitesimal
three-dimensional perturbation u′(x, y, z, t), whose evolution was governed by the
linearized three-dimensional Navier–Stokes equations:

∂u′

∂t
= −(U · ∇)u′ − (u′ · ∇)U − ∇p′ +

1

Re
∇2u′, (2.3)

∇ · u′ = 0, (2.4)

where p′(x, y, z, t) is the pressure perturbation. Homogeneous boundary conditions
u′ = 0 were imposed on the boundaries where the base flow had Dirichlet boundary
conditions, and ∂u′/∂n = 0 was imposed on the boundaries where Neumann
conditions were specifed for the base flow.

Since (2.3) and (2.4) are linear and time periodic (because of their dependence
on the time-periodic field U), the stability of this system can be investigated using
Floquet theory. The solution of (2.3) subjected to (2.4) is a sum of functions of the
form ũ(x, y, z, t)eσ t , where ũ(x, y, z, t), which are called Floquet modes, are T -periodic
solutions. These solutions are obtained by employing an Arnoldi algorithm, in the
way explained in Carmo et al. (2008) and based on the earlier work of Tuckerman &
Barkley (2000). The action of the linearized Navier–Stokes equations (2.3)–(2.4) on
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the perturbation u′ is needed for this algorithm, and this action is calculated by
numerically integrating the equations in a way similar to that employed to integrate
the base flow. The only differences are in the calculation of the nonlinear term, and in
the calculation of the derivatives in the z direction (see Barkley & Henderson 1996,
for details). The stability of the system is given by the sign of the real parts of the
Floquet exponents σ . In Floquet analysis, however, it is more common to use the
Floquet multiplier μ ≡ eσT when displaying the results. The stability criterion is, thus,
that the system is stable if |μ| < 1, unstable if |μ| > 1 and neutrally stable if |μ| =1.

Still, following Barkley & Henderson (1996), the system can be further simplified,
since the spanwise direction z is homogeneous. In such cases, the velocity perturbation
field can be written as a Fourier integral:

u′(x, y, z, t) =

∫ ∞

−∞
û(x, y, β, t)eıβz dβ (2.5)

and similarly for p′. Since we are dealing with the linearized Navier–Stokes equations,
modes with different β do not couple, and the velocity components (û, v̂, ŵ) and
pressure p̂ depend only on x, y and t . Therefore, given a geometrical configuration,
the three-dimensional stability analysis for each Reynolds number can be carried
out by performing a series of two-dimensional stability calculations with different
wavenumbers β . Further details on the algorithms for the stability calculations are
given in Carmo et al. (2008).

For the analysis of the stability results, it is useful to write the linearized Navier–
Stokes equations using the vorticity–velocity formulation. Taking the curl of (2.3) and
(2.4), we get

∂ω′

∂t
= −(U · ∇)ω′ − (u′ · ∇)Ω + (Ω · ∇)u′ + (ω′ · ∇)U +

1

Re
∇2ω′, (2.6)

∇ · ω′ = 0, (2.7)

where ω′ and Ω are the perturbation and base flow vorticity vectors, respectively.
Since the base flow is two-dimensional, i.e. U = (U (x, y, t) , V (x, y, t) , 0) and
Ω = (0, 0, Ωz (x, y, t)), we can write (2.6) for the three components of the perturbation
vorticity (ω′ = (ω′

x, ω
′
y, ω

′
z)) as

∂ω′
x

∂t
+ U

∂ω′
x

∂x
+ V

∂ω′
x

∂y
= ω′

y

∂U

∂y
+ Ωz

∂u′

∂z
+ ω′

x

∂U

∂x
+

1

Re
∇2ω′

x, (2.8)

∂ω′
y

∂t
+ U

∂ω′
y

∂x
+ V

∂ω′
y

∂y
= ω′

x

∂V

∂x
+ Ωz

∂v′

∂z
+ ω′

y

∂V

∂y
+

1

Re
∇2ω′

y, (2.9)

∂ω′
z

∂t
+ U

∂ω′
z

∂x
+ V

∂ω′
z

∂y
+ u′ ∂Ωz

∂x
+ v′ ∂Ωz

∂y
= Ωz

∂w′

∂z
+

1

Re
∇2ω′

z. (2.10)

The first terms on the left-hand side of these equations are the local time derivatives
of perturbation vorticity. The remaining terms on the left-hand side account for the
advection of vorticity. The first two terms on the right-hand side of (2.8) and (2.9)
correspond to vortex tilting, and the third term in (2.8) and (2.9) and first term in
(2.10) are vortex stretching terms. Finally, the last term in all three equations denotes
perturbation vorticity diffusion.
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2.2. Nonlinear analysis

The linearized Navier–Stokes equations are valid provided that the perturbation is
very small compared to the base flow. If the perturbation is unstable as predicted
by the linear stability analysis, it will grow exponentially and will eventually reach
an amplitude for which nonlinear interactions must be taken into account. In order
to study the effects of these interactions on the growth of the perturbation and to
characterize the final state of the complete nonlinear system after the bifurcation,
nonlinear simulations were employed.

These simulations were performed using a three-dimensional version of the Navier–
Stokes solver which uses Jacobi polynomials in the spatial discretization in the xy

plane and Fourier modes in the spanwise direction (Karniadakis 1990). The spanwise
dimension of the domain was equal to the wavelength of the perturbation and periodic
boundary conditions were used on the top and bottom of the domain. The Reynolds
number chosen was slightly higher than that of the bifurcation given by the linear
stability analysis. The initial condition was the base flow summed to the unstable
perturbation with very low energy. The flow was allowed to evolve so the initial
linear growth of the perturbation could be observed, followed by the manifestation
of nonlinear interactions and finally the saturation of the growth at a new fully
developed state.

The evolution of hydrodynamic systems at Reynolds numbers close to a bifurcation
was often successfully modelled by the Landau equation (Provansal, Mathis &
Boyer 1987; Henderson 1997; Sheard, Thompson & Hourigan 2004). This equation
describes the evolution of the amplitude A(t) of the perturbation and can be written
as

dA

dt
= (α + ıω) A − l (1 + ıc) |A|2A + · · · , (2.11)

truncating the equation at the third-order term. The parameter α is the linear growth
rate of the perturbation, which corresponds to the real part of the exponent obtained
from the linear stability analysis. The term ω is the angular oscillation frequency
of the perturbation energy during the linear growth phase. For bifurcations with
synchronous modes (imaginary part of the Floquet exponent equals to zero), ω

is equal to the oscillation frequency of the base flow. The growth of the linear
part is eventually counter-balanced by the terms of higher order, since the physical
system is bounded. The role of the third-order term is of special interest, since
it determines if the bifurcation is supercritical or subcritical. The sign of the
coefficient l in (2.11) indicates the type of the bifurcation: if l > 0 the bifurcation
is supercritical and if l < 0 the bifurcation is subcritical. Supercritical bifurcations
are non-hysteretic and can usually be fully described by the Landau equation
truncated at third order. On the other hand, subcritical bifurcations generally
present hysteresis and terms of order higher than the third in the Landau equation
are needed to adequately describe the behaviour of the system, since both the
linear- and third-order terms contribute to the growth of the system. Finally, c

is the Landau constant and its effect is to modify the oscillation frequency of the
system.

To obtain the values of l and c, we write the complex amplitude A in polar form,
A(t) = ρ(t)eiΦ(t). The real variable ρ = |A| describes the mode amplitude, and the real
variable Φ describes the phase of the mode. The real and imaginary parts of (2.11)
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then read as

d log(ρ)

dt
= α − lρ2, (2.12)

dΦ

dt
= ω − lcρ2. (2.13)

If we plot the value of d log(|A|)/dt against |A|2, (2.12) can be used to determine the
values of α and l: α is the value of d log(|A|)/dt when |A|2 = 0 and l is equal to minus
the value of the slope of the curve. If the graph is linear at large |A|2 it means that
the Landau equation truncated at third order is sufficient to describe the evolution of
the system. The value of the Landau constant c can be obtained considering that at
saturation A oscillates with frequency ωsat , so

dΦ

dt
= ωsat = ω − lcρ2

sat .

From (2.12), we obtain ρ2
sat = α/l. Therefore, we can write

c =
ω − ωsat

α
.

A final note should be given on the definition of the amplitude A. In this work, the
same definition used in Carmo et al. (2008) is adopted:

|A(t)| =

[∫
Ω

|û1(x, y, t)|2
]1/2

.

Ω is the two-dimensional cross-section of the domain being considered and û1(x, y, t)
is the coefficient of the Fourier mode corresponding to the perturbation being
investigated.

3. Secondary instabilities in the wake for the flow around a single cylinder
In this section, a summary about the secondary instabilities observed in the wake

of the flow around a single cylinder is presented in order to provide a benchmark to
which the results presented in the next section will be compared. The reader interested
in more details about these results should refer to Barkley & Henderson (1996) and
Blackburn, Marques & Lopez (2005) for the linear stability analysis results and to
Henderson (1997) for the nonlinear analysis. The main results presented in these
references were reproduced in Carmo et al. (2008) using the same code that was used
in the present work. A very comprehensive account on the secondary instabilities
from the experimental point of view is given in Williamson (1996).

In figure 2(a) the modulus of the Floquet multiplier |μ| is plotted as a function
of the non-dimensional spanwise wavenumber βD for various Reynolds numbers.
The values of |μ| increase with Re and unstable values (|μ| > 1) are observed at two
distinct peaks in the curves. Using the nomenclature introduced by Williamson (1988),
the peak for lower βD corresponds to mode A and that for higher βD corresponds
to mode B. The Floquet multiplier for both modes is purely real and positive.
The neutral stability curves are shown in figure 2(b). It can be seen that mode A
becomes unstable earlier, at ReA =190 ± 1 with a wavelength λzA/D = 3.97 ± 0.01
(βAD = 1.58), and mode B becomes unstable at ReB = 260.5 ± 1.0 with a wavelength
λzB/D = 0.825 ± 0.010 (βBD = 7.62). In the present work, we will be more concerned
with these two modes that first become unstable as the Reynolds number is increased;
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Figure 2. Flow around a single cylinder. (a) Modulus of the Floquet multiplier |μ| as a
function of the spanwise wavenumber times the cylinder diameter βD for various Reynolds
numbers. (b) Neutral stability curves (curves that pass through points where |μ| = 1), plotted
in a map of Reynolds number (x-axis) and mode non-dimensional wavelength (y-axis); in the
region on the right-hand side of the curves the two-dimensional periodic flow is unstable with
respect to three-dimensional perturbations; continuous and dashed curves are from Barkley &
Henderson (1996) and refer to modes A and B, respectively; × represent mode A neutral
points and � represent mode B neutral points from Carmo et al. (2008).
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Figure 3. Floquet mode x vorticity contours and base flow z vorticity iso-lines, single cylinder.
Light contours and dashed lines are negative vorticity and dark contours and solid lines are
positive vorticity. (a) Mode A: Re =200, βD = 1.571; (b) mode B: Re =300, βD = 7.570.

however, it is worth noting that, besides modes A and B, the wake of the flow around a
single cylinder also becomes unstable to a quasi-periodic mode (the Floquet multiplier
is complex) at ReQP ≈ 377 with λzQP /D ≈ 1.8

(
βQP D ≈ 3.49

)
(Blackburn et al. 2005).

In addition to the critical Reynolds numbers and wavelengths, modes A and B also
show differences regarding their spatio-temporal symmetries. It is usual to visualize
the structure of these three-dimensional modes using streamwise vorticity contours
(ω̃x). The symmetry observed for mode A using such contours is

ω̃x(x, y, z, t) = −ω̃x(x, −y, z, t + T/2), (3.1)

while for mode B it reads

ω̃x(x, y, z, t) = ω̃x(x, −y, z, t + T/2). (3.2)

These symmetries are shown in a graphic way in figure 3. For mode A, the Floquet
mode x vorticity has different sign either side of the wake centreline, whereas for
mode B the mode x vorticity has the same sign throughout the cycle. In the same
figure, it can be seen that mode A has stronger streamwise vorticity contours in the
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base flow vortex cores, while for mode B the stronger three-dimensional structures
are observed in the shear layers that link the cores.

Regarding the nonlinear character of the bifurcations, Henderson (1997) showed
that mode A bifurcates through a subcritical route that causes a reduction in the
primary oscillation frequency of the wake at saturation. On the other hand, mode B
bifurcates through a supercritical route with no frequency shift near the threshold.

4. Computational simulations
The study of the secondary instabilities in the flow around two circular cylinders

in tandem arrangements is more complicated than in the case of an isolated cylinder
since there are two control parameters, namely the Reynolds number and cylinder
separation. In § 5, detailed results are presented for four different configurations,
which are tandem arrangements with centre-to-centre distances of 1.5D, 1.8D, 2.3D

and 5.0D. These configurations were chosen after a number of calculations were
performed, and they are representative of the four different scenarios encountered for
Lx/D � 1.2. Care was taken to ensure that these specific cases capture all possible
scenarios observed, with accuracy of 0.1D in the separation.

The base flow for the configurations with Lx/D = 1.5, Lx/D = 1.8, Lx/D = 2.3 and
Lx/D = 5.0 in the secondary instability Reynolds number range can be classified in
three different shedding regimes, shown in figure 4. For Lx/D = 1.5, a pair of almost
symmetric vortices are formed in the interstitial region, and the shear layers that
separate from the upstream cylinder and reattach to the downstream cylinder are
nearly steady upstream from the formation region (the region where the shear layers
roll up and form the vortices). We will call this vortex shedding regime SG (symmetric
in the gap). The graphs in figure 5(a, d ) show that, for configurations at this shedding
regime, the root mean square (RMS) of the lift coefficient is very small for both
cylinders, and the drag coefficient of the downstream cylinder is negative. For
Lx/D = 1.8 and Lx/D = 2.3, the vortices are not shed in the interstitial region, but
there are regions of concentrated vorticity whose sizes grow and decrease alternatively
in time. The shear layers that separate from the upstream cylinder and reattach on
the downstream cylinder surface flap up and down according to the vortex shedding
frequency. We will refer to this regime as AG (alternating in the gap). It can be seen
in figure 5(b, e) that the forces on the upstream cylinder do not differ much from
what is observed in the shedding regime SG, although a decrease in the frequency can
be observed. The downstream cylinder, however, experiences a considerable increase
in the RMS of the lift coefficient when compared to regime SG. Lastly, for Lx/D =5
the vortices are shed in the gap region, and this regime will be referred as WG (wake
in the gap). Figure 5(c, f ) shows that the RMS of all forces increase greatly and
that the drag on the downstream cylinder becomes positive. The discontinuity in the
aerodynamic forces mentioned in the introduction happens when the shedding regime
changes from AG to WG. It is interesting to notice that even for regime WG the
near wakes of the upstream and downstream cylinders are fundamentally different.
The near wake of the upstream cylinder exhibits a vortex formation mechanism
like that observed for an isolated cylinder, described by Gerrard (1966), whereas
the shedding in the near wake of the downstream cylinder appears to be controlled
by the upstream wake impinging on the body and no ‘true’ formation region is
observed, as discussed in Carmo et al. (2008). We observed hysteresis in both regime
transitions: between regimes SG and AG and between regimes AG and WG. In a
sense, the shedding regimes SG, AG and WG correspond, respectively, to regimes
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Figure 4. Instantaneous vorticity contours, Re = 200, two-dimensional simulations. Contours
vary from ωzD/U∞ = −2.2 (light contours) to ωzD/U∞ = 2.2 (dark countours). (a) Lx/D = 1.5 –
regime SG; (b) Lx/D = 2.3 – regime AG; (c) Lx/D = 5 – regime WG.

W-T1, W-T2 and W-T (1+2) of the classification proposed by Zdravkovich (1987). A
significant difference is that Zdravkovich mentioned that in regime W-T1 the shear
layer separating from the upstream cylinder did not reattach on the downstream
cylinder, while this reattachment was observed to occur for all configurations studied
in the current work.

The results are presented for Reynolds numbers in the transition range for each of
the cases and the non-dimensional perturbation spanwise wavenumbers investigated
varied from 0.0 to 15.0. The base flow was generated by means of two-dimensional
simulations using a mesh whose upstream boundary was located 36D from the centre
of the upstream cylinder, the downstream boundary located 45D from the centre of
the downstream cylinder and the side boundaries located at 50D from the centre
of the bodies, as can be seen in figure 6(a). The number of elements varied from
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Figure 5. Drag coefficient (grey solid line) and lift coefficient (black dashed line) time series
for the upstream and downstream cylinders, Re = 200, two-dimensional simulations. The scale
of the graphs is the same for ease of comparison. (a, d ) Lx/D = 1.5 – regime SG; (b, e)
Lx/D = 2.3 – regime AG; (c, f ) Lx/D = 5 – regime WG.

554 to 765, depending on the configuration, and polynomials of degree 8 were used
as base and test functions. These dimensions and level of discretization were based
in a previous convergence study carried out in Carmo et al. (2008). Subsequently, a
number of equally spaced in time snapshots were taken over a cycle. We performed
a convergence study and concluded that 32 snapshots were sufficient to properly
represent the base flow (calculations using 64 snapshots showed variations of less
than 0.1 % in the eigenvalue). In order to save computational cost, these snapshots
were interpolated into smaller meshes, in which the stability calculations were carried
out, using a Krylov subspace of size 10. These meshes had upstream boundary located
8D from the upstream cylinder, downstream boundaries located around 24D from
the downstream cylinder and side boundaries 5D far from the centre of the bodies.
A typical example of this mesh is depicted in figure 6(e). A convergence analysis was



406 B. S. Carmo, J. R. Meneghini and S. J. Sherwin

40

(b)

(c)

(d)

(a)

20

0y

–20

–40

0y

–5

5

–20 20
x

(e)

x

400

0 10 20

Figure 6. Example of mesh used to generate the base flows (a), details of the meshes in the
vicinity of the cylinders for Lx/D = 1.5 (b), Lx/D = 2.3 (c), Lx/D = 5 (d ) and example of
mesh used in the stability calculations (e).

undertaken to see how the stability results were affected by the dimensions of the
mesh. It was verified that the differences between the results obtained with the original
mesh and those obtained with the smaller meshes were negligible (less than 0.001 %),
as long as the base flow was generated in the original large mesh. This result is in
agreement with the convergence studies published in Barkley & Henderson (1996).
The nonlinear simulations were performed using the large mesh and 4 Fourier modes
were used in the discretization in the spanwise direction.

Bearing in mind that the study carried out by Mizushima & Suehiro (2005) to
investigate the primary instability was two-dimensional, a question that can naturally
arise is whether the primary instability is indeed from two-dimensional steady flow to
two-dimensional time-periodic flow, or if there is a bifurcation to a three-dimensional
state (steady or unsteady) prior to that. To answer this question, we have run
preliminary calculations to check for three-dimensional instabilities of steady flows at
Reynolds numbers slightly below the primary instability as calculated by Mizushima &
Suehiro (2005). The configurations tested were Lx/D = 1.5, 1.8, 2.3 and 5.0, the
Reynolds numbers were 40 for Lx/D =5.0 and 70 for the other three configurations,
and the non-dimensional spanwise wavenumbers varied from 0.0 to 15.0. The flows
were stable for all cases with no discernible peak approaching the stability threshold.
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Figure 7. Flow around two circular cylinders in tandem with Lx/D =1.5. (a) Modulus of
Floquet multiplier as a function of the non-dimensional spanwise wavenumber, (b) neutral
stability curves.

Therefore, we concluded that the primary instability is indeed from two-dimensional
steady flow to two-dimensional unsteady flow for the type of arrangement investigated
in this paper.

5. Results – flow around circular cylinders in tandem arrangements
In the following subsections, each of the different scenarios for the secondary

instability that were observed are analysed in detail. Results from the linear stability
calculations and nonlinear simulations of representative configurations are presented,
and physical mechanisms to explain the instabilities are proposed.

5.1. Configuration Lx/D = 1.5 – shedding regime SG

For all cases in which the shedding regime was of type SG (see figure 4a), the
same secondary instability scenario was observed, and is illustrated by configuration
Lx/D = 1.5.

5.1.1. Linear analysis

Figure 7(a) shows the variation of the modulus of the Floquet multiplier according
to the perturbation wavenumber for different Reynolds numbers. The figure shows
that for Re � 300 the two-dimensional flow is linearly stable to infinitesimal three-
dimensional perturbations (the Floquet multipliers have a modulus of less than 1 for
all wavenumbers). When the Reynolds number was increased to 350, the flow became
unstable to perturbations with a non-dimensional wavenumber βD ≈ 3.0. For the
entire Reynolds number range investigated, the least stable mode had a purely real
eigenvalue for βD < 5. The least stable modes for βD � 5 all have complex Floquet
multipliers.

Further simulations were performed in order to draw the neutral stability curve
displayed in figure 7(b). The mode that became unstable had its bifurcation point at
Re =315 ± 1, and the unstable eigenmode had a wavenumber of βD =2.998 ± 0.002,
corresponding to a wavelength of λz/D = 2.096 ± 0.002. For ease of reference, we
will call this mode T1. The critical Reynolds number for this configuration is much
higher than that for the flow around a single cylinder, and the wavelength of the
perturbation of maximum growth has a value between the wavelengths of mode A
and mode B observed in the isolated cylinder case.

Figure 8 shows the structure of mode T1. It can be seen that mode T1 has a
symmetry similar to that of mode B, with the same sign of streamwise vorticity on
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perturbation amplitude (symbols), growth predicted by linear calculations (continuous line)
and growth predicted by the Landau equation (dashed line). The inset shows the bifurcation
diagram in which the supercritical character is also clear.

both sides of the wake. Another similarity is that both modes (T1 and B) have strong
streamwise vorticity in the shear layers that link the cores, although mode T1 also
shows significant x vorticity values in the vortex cores. Also worth noting is the fact
that mode T1 and the single cylinder mode B have completely different wavenumbers:
the non-dimensional wavenumber for mode B is approximately 7.5.

5.1.2. Nonlinear analysis

A three-dimensional simulation was carried out in order to assess the nonlinear
character of the bifurcation of mode T1 in the flow around the configuration with
Lx/D = 1.5. The methodology adopted was explained in § 2.2. Figure 9 shows the
results of this simulation. The bifurcation is clearly supercritical, and the Landau
equation truncated at third-order fits remarkably well to the data. The inset in
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(a) (b)

Figure 10. Three-dimensional views of the nonlinear results at the saturated state (a) and
base flow combined with the unstable Floquet mode (b), Lx/D = 1.5, Re = 320, βD = 3.0 –
mode T1. Translucent surfaces represent iso-surfaces of |ωz|. Solid light grey and dark grey
surfaces represent iso-surfaces of negative and positive ωx , respectively.

figure 9(b) shows the bifurcation diagram for this configuration, in which it can be
seen that the amplitude squared of the perturbation energy follows a straight line for
Reynolds numbers greater than the critical, in the vicinity of the bifurcation. This is
also a characteristic of supercritical bifurcations.

Figure 10(a) shows iso-surfaces of vorticity for the saturated state and figure 10(b)
shows these iso-surfaces for a linear combination of the base flow and Floquet mode.
These figures display the flow fields at roughly the same phase of the shedding
cycle. It can be seen that the contours are similar; the three-dimensional structures
of the unstable mode remain clearly observable after the nonlinear growth of the
perturbation.

5.1.3. Physical mechanism

Mode T1 has a number of characteristics that suggest that the physical mechanism
responsible for this instability is of hyperbolic type. The basic theory and mathematical
formulation of hyperbolic instabilities for viscous fluids were presented by Lagnado,
Phan-Thien & Leal (1984), who showed that perturbation streamwise vorticity in a
straining base flow field grows due to vortex stretching, and this growth competes
with the viscous diffusion. The resulting field exhibits streamwise vorticity aligned
with the outlet streamlines of the straining field. This kind of instability has been
found in some other flows, like plane shear layers (Lasheras & Choi 1988), and
was suggested to be the physical mechanism of mode B in the single cylinder flow
(Williamson 1996).

In order to illustrate the physical mechanism of mode T1, figure 11 presents
instantaneous base flow streamtraces superposed to Floquet mode x vorticity contours.
Using the arbitrary time scale indicated in the figure, it can be seen that for T/8 the
base flow has a hyperbolic region close to the recently shed vortex, as indicated by the
straining instantaneous streamlines. The perturbation negative streamwise vorticity on
the bottom of the figure is amplified through a stretching mechanism (term ω′

x∂U/∂x

in (2.8)). Part of this amplified streamwise vorticity is convected upstream and to the
opposite side of the wake by the base flow, as shown by the streamtraces pointing
left-upwards at instants T/4 and T/8. By the time a new positive base flow spanwise
vortex is formed, the region of streamwise vorticity has already reached the top side
of the wake. When the new vortex is shed (instant T/2), it provides a new region of
hyperbolic flow, which amplifies the streamwise vorticity that is now on the top side
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Figure 11. Base flow instantaneous streamtraces superposed to Floquet mode x vorticity at
the base region of the downstream cylinder over one shedding period; Lx/D = 1.5, Re =315,
βD = 2.998 – mode T1. Light contours represent negative vorticity and dark contours represent
positive vorticity.

of the wake. The process repeats symmetrically along the other half of the shedding
period (instants 5T/8 to T ). The fact that the streamwise vorticity is amplified at one
side of the wake, convected to the other side, amplified there and then convected back
means that the sign of the streamwise vorticity observed in the wake does not change
from one side of the wake to the other, and this explains the symmetry observed for
this mode.
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5.2. Configuration Lx/D =1.8 – shedding regime AG

If the separation is increased so the shedding regime changes from SG to AG (see
figure 4b), the secondary instability scenario also changes. In fact, two different
transition modes are observed for regime AG; one for the smaller separations
(1.6 <Lx/D � 1.9) and another for larger separations (2.0 � Lx/D � 3.0). In this
section, the configuration Lx/D =1.8 is used as a typical example to study the first
mode in detail, while the second will be analysed in § 5.3.

5.2.1. Linear analysis

Figure 12 shows the variation of the modulus of the less stable Floquet multiplier
with Reynolds number and perturbation wavenumber and also the neutral stability
curve for this configuration. It can be seen in figure 12(b) that the flow becomes
unstable for a larger Reynolds number (Recr = 409 ± 1) than for the other cases. The
wavenumber of the unstable mode at the onset is βD = 2.214 ± 0.002, corresponding
to a wavelength λz/D =2.838 ± 0.003, which is in between those of modes A and B
observed in the flow around an isolated cylinder. This mode will be referred to as
mode T2, and has a purely real Floquet multiplier. The least stable modes for higher
wavenumbers (βD � 4) have complex Floquet multipliers.

Mode T2 streamwise vorticity contours superposed to base flow spanwise vorticity
iso-lines for Re = 415 and βD = 2.200 are shown in figure 13. It can be seen that
the symmetry of the mode x vorticity contours is the same as that of mode A for
the isolated cylinder. It is worth noting that the Floquet mode streamwise vorticity
contours are particularly strong in the shear layers of the base flow, unlike those of
mode A. There is no evidence of spanwise flow in the gap between the cylinders, so we
conclude that the instability originates in the near wake of the downstream cylinder,
like mode T1. However, there is streamwise vorticity in the shear layers separating
from the downstream cylinder even upstream of the region where the vortices are
formed (see figure 20 for more clear evidence of spanwise flow in the base region of
the downstream cylinder). This is different from mode T1, which originates further
downstream, in the zone where the opposite shear layers interact.

5.2.2. Nonlinear analysis

The results for the nonlinear analysis of mode T2 displayed in figure 14 show a
very unusual behaviour. The nonlinear growth of the perturbation follows the linear
trend only for two or three cycles, and then the curve changes its slope drastically
and starts to follow a much milder growth trend, as illustrated in figure 14(b). This
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Figure 13. Mode T2 x vorticity contours and base z vorticity iso-lines, Lx/D =1.8,
Re = 415, βD = 2.200. Contours and lines are as in figure 8.
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is translated in the graph of d log(|A|)/dt against |A|2 in figure 14(a) as an initial
decay, followed by an sharp transition to a state in which d log(|A|)/dt evolves very
slowly, corresponding to an almost flat curve in the graph. To confirm these results,
we performed a number of tests which included increasing the resolution of the
mesh, varying the Reynolds number in the vicinity of the bifurcation, decreasing the
perturbation initial energy and decreasing the time step; all tests resulted in curves
with the same behaviour.

As a tentative alternative approach to elucidate the nonlinear character of mode T2
bifurcation, additional calculations were performed to draw the diagram shown in
figure 15. No hysteresis was observed, so the bifurcation could not be classified as
subcritical. However, the square of the amplitude at saturation does not follow a
straight line for Reynolds numbers higher than the critical either, and this rules out
the classification of the bifurcation as supercritical.

Interestingly, although the perturbation energy grows in an unexpected way, the
shape of the unstable mode is not altered significantly during the nonlinear evolution
of the perturbation. The vorticity contours of the nonlinear calculations at saturation
level are compared to a combination of the Floquet mode and base flow in figure 16.
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Figure 16. Three-dimensional views of the nonlinear results at the saturated state (a) and base
flow combined with unstable Floquet mode (b), configuration Lx/D = 1.8, Re = 415, βD =
2.2 – mode T2. Surfaces are as in figure 10.

The plots refer to approximately the same phase of the shedding cycle. Like for
Lx/D = 1.5, the structures of the Floquet mode can be plainly observed in the
saturated state.

5.2.3. Physical mechanism

As seen in figure 13, mode T2 originates just after the leeward cylinder, in a region
upstream from where the vortices are formed. This suggested that the mechanism
responsible for the existence of the mode does not depend directly on the interaction
between the shear layers, in the sense that it initiates at a region in which this
interaction is absent. We confirmed this hypothesis by running stability calculations
with a slightly modified geometry, placing a free-slip plate in the near wake of
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calculations carried out to investigate the physical mechanism of mode T2. (b) Floquet
multipliers obtained from the calculations with the free-slip plate (�), compared to the original
results without the free-slip plate (�), for Re = 450, Lx/D =1.8.

the downstream cylinder, as illustrated in figure 17(a). The perturbation boundary
conditions on this line were (∂u/∂n = 0, v = 0, ∂w/∂n = 0). The original base flow
(obtained without the free-slip plate) was utilized in the calculations. We argue that if
the instability mechanism entails some sort of communication between the opposite
sides of the wake, the presence of the plate should eliminate the mode. Figure 17(b)
shows the results of this test: the values of the Floquet multiplier barely changed
from those obtained with the original calculation. Therefore, it was concluded that
the interaction between the shear layers does not play a role in the initiation of this
mode. This contrasts with what is observed in all the other known three-dimensional
modes in the flow around bluff bodies (for example, modes A, B, and QP), where the
interaction between the shear layers seems to play an essential role in the inception
of the instabilities.

Next, we present some evidence that suggests that mode T2 has its origin in
a centrifugal instability at the near wake, and is amplified through a hyperbolical
mechanism in the shear layers when the vortices are about to be shed. A centrifugal
instability is a manifestation of an imbalance between centrifugal and viscous forces
(Oertel 2004). The theoretical foundations of the centrifugal instability for viscous
fluids were laid down by Taylor (1923), who also demonstrated this instability
experimentally in the flow between two concentric cylinders. Bayly (1988) developed
the basic principles of the centrifugal instability for generic convex closed streamlines,
and showed that a necessary condition for centrifugal instability to occur in such
flows is that the magnitude of the angular momentum should decrease in the outward
direction. The centrifugal instability was later found to be the physical mechanism
behind the three-dimensional instability of other steady flows such as the flow over a
backward-facing step (Barkley, Gomes & Henderson 2002; Beaudoin et al. 2004).

The identification of a region susceptible to centrifugal instability using
mathematical arguments is much more problematic for unsteady flows than for
steady flows. However, in the present work the locations where the three-dimensional
instabilities are stronger are given by the Floquet modes, so it is possible to check
whether the base flow at these locations has certain characteristics that are found in
steady flows prone to centrifugal instabilities. For example, Barkley et al. (2002)
reported that, for the flow over a backward-facing step, the regions where the
centrifugal instability was particularly strong were just behind the step edge and
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Figure 18. Base flow particle paths superposed to w contours of the Floquet mode,
Lx/D = 1.8, Re = 409, βD = 2.214 – mode T2. The shades of grey of the path lines stand
for the velocity magnitude along the path; light shades represent high velocities and dark
shades represent low velocities; the arrows indicate the time sense of the paths.

at the downstream reattachment point. The common features of these regions are
the significant curvature of the streamlines and strong deceleration of the flow. These
characteristics make the gradient of the angular momentum in the direction away
from the centre of curvature of the streamlines negative, with considerable magnitude.
In the case of unsteady flow, particle paths should be used instead of streamlines.
Figure 18 shows base flow particle paths superposed on the Floquet mode z velocity
field; the time instant for which the mode is represented is the same as that when the
particle paths were interrupted. The particles were released half a period earlier from
rakes aligned in the x direction placed at convenient locations. In figure 18 the paths
are drawn using shades of grey that represent the magnitude of the base flow velocity
along the path. It can be seen that the regions where the mode spanwise velocity
is greater are regions where the particle paths have large curvature and undergo
significant deceleration.

The centrifugal instability produces the regions of y vorticity perpendicular to the
axis of the cylinder, as shown in figure 19. In order to understand how this vorticity
is transported to the wake and amplified, snapshots of the Floquet mode w contours
at the base region of the leeward cylinder along a shedding period are displayed in
figure 20. The figure shows that mode T2 exhibits two zones of opposite w velocity in
the near wake of the downstream cylinder (a zone of positive w at the base region of
the cylinder and a zone of negative w slightly more downstream) persisting through
the entire period. Because of this, and because the x velocity of the base flow is
predominantly negative in that same region, the combined flow displays persistent
regions of y vorticity, which alternate in the spanwise direction (see figure 19). Due
to the oscillation of the base flow in the y direction, these regions of y vorticity are
transported towards the base flow shear layers (instants T/8 and 5T/8 in figure 20).
The shear layers are regions of strong gradient of U in the y direction, so the
perturbation y vorticity is transformed to x vorticity through a tilting mechanism
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Figure 19. Contours of y vorticity at the y = 0 plane for the three-dimensional simulation of
the flow around configuration with Lx/D = 1.8 at Re = 415, showing mode T2. Light contours
and dashed lines represent negative vorticity and dark contours and solid lines represent
positive vorticity. Flow is from bottom to top.

(term ω′
y∂U/∂y in (2.8)). Since the y vorticity region at the base of the downstream

cylinder has the same sign on both sides of the wake, but the base flow ∂U/∂y has
a different sign on either side, the result is that the sign of the streamwise vorticity
will be different on either side of the wake, and this determines the symmetry of
mode T2. This change of sign in the streamwise vorticity is illustrated in figure 20.
When streamwise vorticity appears in the shear layer with negative spanwise vorticity
(the shear layer separating on the top of the cylinder in the figure), the region of
spanwise velocity that is closer to the cylinder will be at the top (instant T/4). On
the other hand, when y vorticity is transformed in x vorticity in the shear layer
with positive spanwise vorticity, the region of spanwise velocity that is closer to the
cylinder will be at the bottom (instant 3T/4).

A little further downstream, in the region where the opposite shear layers interact
to form the vortices, the perturbation w velocity is strengthened, as can be seen in the
snapshots corresponding to the instants T/2 and T in figure 20. The rationale behind
this is that when the streamwise vortex reaches the edge of the vortex formation
region, which is a zone of hyperbolic flow (figure 21), the streamwise vorticity is
amplified through a stretching mechanism, in an analogous way to the mechanism
described for mode T1. These regions where the x vorticity is amplified are those
where the contours are more evident in figure 13.

5.3. Configuration Lx/D = 2.3 – shedding regime AG

When the gap space was increased a little further, but not enough to alter the base
flow shedding regime, another change in the onset of the three-dimensional transition
was observed. The configuration with Lx/D =2.3 was chosen to illustrate this scenario
because the shedding regime and secondary instability character did not change over
a significant Reynolds number range (200 � Re � 350).

5.3.1. Linear analysis

The results for the modulus of the Floquet multiplier are shown in figure 22(a).
For Re =200, the flow is stable. It then becomes neutrally stable at Re = 250 ± 1
with a wavenumber of βD = 1.366 ± 0.02 (Lz/D = 4.600 ± 0.007), and is unstable for
higher Reynolds numbers. Only one unstable mode appears for Re � 350, and the
non-dimensional wavenumber of maximum growth of this mode, which will be called
mode T3 and has purely real Floquet multiplier, is approximately βD = 1.32. For
βD � 3.5, the least stable modes always had complex Floquet multipliers.

The neutral stability curve drawn in figure 22(b) shows that the wavelength range
of this mode expands quickly with the Reynolds number, and at Re = 350 it spreads
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Figure 20. Snapshots of Floquet mode contours of z velocity at the base region of the
downstream cylinder along one shedding period, Lx/D = 1.8, Re = 409, βD =2.214 – mode T2.
Light contours and dashed lines represent negative velocity and dark contours and solid lines
represent positive velocity.

from λz/D = 3.16 to λz/D = 11.9. The critical Reynolds number for this configuration
is lower than those for Lx/D = 1.5 and Lx/D =1.8, but still considerably higher than
that for the single cylinder case, and the wavenumber of mode T3 at the bifurcation
is slightly smaller than the single cylinder mode A wavenumber βD = 1.587.

The shape of mode T3 is depicted in figure 23. It can be seen that this instability
originates in the gap region, hence differing from modes T1 and T2, both of which first
appeared behind the downstream cylinder. Figure 23 also shows that the instability
observed for Lx/D = 2.3 breaks the spatial symmetry of the base flow, presenting x

vorticity of the same sign on both sides of the wake, as in the single cylinder mode B.
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Figure 23. Mode T3 x vorticity contours and base z vorticity iso-lines, Lx/D =2.3,
Re =255, βD = 1.37. Contours and lines are as in figure 8.

5.3.2. Nonlinear analysis

Figure 24 shows the results of the nonlinear analysis for this configuration. As in
the configuration Lx/D = 1.5, the bifurcation of the mode is clearly supercritical and
the Landau equation truncated at the third-order models the bifurcation very well.
The bifurcation diagram in the inset of figure 24(b) also confirms that the bifurcation
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Figure 25. Three-dimensional views of the nonlinear results at the saturated state (a) and base
flow combined with unstable Floquet mode (b), configuration Lx/D = 2.3, Re = 255, βD =
1.37 – mode T3. Surfaces are as in figure 10.

is supercritical. Another similarity to the configuration Lx/D = 1.5 is the fact that the
three-dimensional structures of the unstable mode are evident in the saturated state
of the nonlinear simulations (figure 25).

5.3.3. Physical mechanism

The physical mechanism that drives mode T3 shows a number of similarities with
the short wavelength instability of a pair of counter-rotating vortices. According
to Leweke & Williamson (1998a), who investigated the stability of this flow using
experiments in a water tank, this instability has an elliptic nature (Bayly 1986;
Pierrehumbert 1986) and due to a kinematic matching condition for the disturbances
evolving on each vortex core, this instability develops in a cooperative manner. Billant,
Brancher & Chomaz (1999) presented a numeric three-dimensional stability analysis
of a counter-rotating vortex pair. They observed two unstable short wavelength modes
in their calculations; one symmetric and one antisymmetric. The antisymmetric mode
had the larger growth and the authors used this fact to explain why this was the
only short wavelength mode observed in the experiments of Leweke & Williamson
(1998a).

The transient nature of the wake vortices, the existence of a free stream of relatively
large magnitude and the presence of the cylinders very close to the vortices in the
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(a) (b)

Figure 26. (a) Contours of perturbation spanwise vorticity superposed to base flow vorticity
iso-lines, Lx/D = 2.3, Re =255, βD = 1.370 – mode T3. The perturbation spanwise vorticity
forms a dipole which is aligned in the direction of the stretching, indicated by the solid thick
line. (b) λ2 iso-surfaces for the saturated state of the three-dimensional simulation, Lx/D = 2.3,
Re = 255, showing the vortices immediately upstream of the leeward cylinder (for the definition
of the λ2 criterion of vortex identification see Jeong & Hussain 1995). The transparent light
grey surfaces represent surfaces where λ2 = −0.1 and solid dark grey surfaces represent surfaces
where λ2 = − 0.8. The downstream cylinder is represented by the dotted lines.

current results are very important differences from pure vortex flows, and these
differences should be kept in mind when drawing any comparison between the two.
However, there are some similarities between our results and those obtained for
pure vortex flows which suggest that the physical mechanism that sustains mode T3
and the cooperative elliptical instability in a pair of counter-rotating vortices is the
same. First, in both cases there are two counter-rotating vortices in close proximity
interacting with each other. We also noticed that the symmetry of both modes is the
same, if we consider the instants of maximum spanwise vorticity in the base flow:

[u, v, w] (x, y) = [−u, v, −w] (x, −y) ,

[ωx, ωy, ωz](x, y) = [ωx, −ωy, ωz](x, −y).

In addition, similarly to the cooperative elliptical instability, mode T3 exhibits a
spanwise vortex dipole within the vortex cores, and those regions are aligned with the
stretching direction, as shown in figure 26(a).

However, there are also differences between mode T3 and the results for a pair
of counter-rotating vortices previously published in the literature. The first is the
wavelength of the perturbation, which is of the order of the vortex core for the pure
vortex pair (Leweke & Williamson 1998a) and varies from 4.25D to 10.0D at the
onset for mode T3, depending on the geometry considered, as will be discussed in § 6.
If we consider that the cores of the vortices in the wake have approximately the same
diameter as the cylinders, this means that the wavelength of mode T3 is considerably
larger. Another difference is the fact that Leweke & Williamson (1998a) and Billant
et al. (1999) reported that the waviness of the inner and outer layer of the vortex cores
had opposite signs. This is not the case for mode T3, as can be seen in figure 26(b);
in the current results, the inner and outer layers bent in phase. These discrepancies
might be justified by the remarkable difference between the strain fields and vortex
cores of the two cases. For the classic counter-rotating vortex pair, the strain field and
the core size are almost steady, changing slowly as the vortices are deformed. On the
other hand, in the flow around circular cylinders in tandem, both the strain field and
size of the cores are time-dependent and affected by the solid walls in great measure.

In order to obtain additional evidence to support the hypothesis that these two
instabilities have the same origin, we ran an additional set of stability calculations
on a slightly modified geometry. The stability of the base flow obtained for
the configuration with Lx/D = 2.3 at Re = 300 was tested to three-dimensional
perturbations with an additional constraint. A free-slip plate of 0.5D aligned with the
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Figure 27. (a) Schematic drawing showing the free-slip plate used on additional stability
calculations carried out to investigate the physical mechanism of mode T3. (b) Floquet
multipliers obtained from the calculations with the free-slip plate (◦), compared to the original
results without the free-slip plate (�), for Re = 300, Lx/D = 2.3.

line that passes through the centres of the cylinders was placed at the upstream end
of the downstream cylinder, as illustrated in figure 27(a). The perturbation boundary
conditions on this line were (∂u/∂n =0, v = 0, ∂w/∂n = 0). The rationale behind this
test was that if T3 instability had a cooperative nature, the imposition of this free-slip
plate should hinder its growth, since the communication between the two vortices on
the opposite sides of the wake would be prevented. As can be seen in figure 27(b),
this was indeed observed. The Floquet multipliers in the range in which mode T3 is
unstable in the original calculations (1.5 � βD � 2.0) are all stable for the modified
case and there is not even a local peak in the curve of the modified case. For higher
wavenumbers, the results of the modified case roughly follow the original results.
Therefore, it seems that mode T3 has the same nature as the cooperative elliptical
instability of counter-rotating vortex pairs, and the few dissimilarities between the
two instabilities can be accounted for by the differences in the base flows.

5.4. Configuration Lx/D =5 – shedding regime WG

If the separation is further increased, the vortex shedding regime eventually changes.
The flow around the configuration with Lx/D = 5 is an example of the vortex shedding
regime WG, in which a complete von Kármán wake can be observed in between the
cylinders (see figure 4c).

5.4.1. Linear analysis

Figure 28(a) shows the results for Lx/D = 5, which are very similar to the results
observed for the flow around a single cylinder. There are two noticeable peaks: one
for low wavenumber and one for high wavenumber. The Floquet multiplier is real
and positive at both peaks and, in the flow around a single cylinder, they correspond
to modes A (low β) and B (high β) (Barkley & Henderson 1996). Also similar to
the single cylinder case is the fact that the least unstable modes for intermediate
wavenumbers (between the two peaks) have complex Floquet multipliers.

The neutral stability curves displayed in figure 28(b) also bear a strong resemblance
to those for a single cylinder. However, the long wavelength critical Reynolds number
for Lx/D =5.0 is 180 ± 1, which is lower than that for mode A in the single cylinder,
and the wavenumber of the unstable mode at the bifurcation, βD =1.662 ± 0.002,
is slightly larger than that of mode A. On the other hand, the short wavelength
mode becomes linearly unstable later in Re terms for the tandem arrangement
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Figure 29. Floquet mode x vorticity contours and base z vorticity iso-lines, Lx/D = 5,
Re = 200, βD = 1.75 – mode A. Contours and lines are as in figure 8.

(Recr =272.5 ± 1) than for mode B in the single cylinder case, and the wavelength of
the unstable mode βD = 0.823 ± 0.002 coincides with that of mode B.

The low wavenumber mode is already unstable for Re =200. Looking at the
streamwise vorticity contours in figure 29, it can be seen that, like mode A, this mode
maintains the base flow symmetry. Given all the similarities between the present mode
and the single cylinder mode A (wavenumber, symmetry, critical Re), we argue that
these instabilities are indeed of the same type. Also in figure 29, we see that the
perturbation originates in the near wake of the upstream cylinder and gets stronger
when it impinges on the downstream cylinder. Further downstream, in the region
where the vortices interact in the far wake, the instability is again amplified, as also
reported in Carmo et al. (2008).

In fact, this behaviour appears to be consistent with the hypothesis that mode A
is a manifestation of elliptic instability of the vortex cores (Williamson 1996;
Leweke & Williamson 1998b; Thompson, Leweke & Williamson 2001). According to
this hypothesis, the deformation of the vortex cores, which makes them assume an
elliptical form, and the interaction between the vortex cores due to their proximity are
key factors in initiating and sustaining mode A. It appears that the presence of the
downstream cylinder favours both the deformation and the interaction of the vortex
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Figure 30. Floquet mode x vorticity contours and base z vorticity iso-lines, Lx/D = 5,
Re = 300, βD = 8.0 – mode B. Contours and lines are as in figure 8.

cores in different regions of the flow field. First of all, the presence of the downstream
cylinder generates an adverse pressure gradient in the interstitial region (Carmo &
Meneghini 2006), which is expected to enhance the deformation and interaction of
the cores in the near wake of the upstream cylinder. Since mode A instability is
initiated in the near wake of the upstream cylinder, this feature may explain why
this mode becomes unstable earlier in terms of Reynolds number for flows around
tandem arrangements in regime WG than for the flow around an isolated cylinder.
When the vortices approach and impinge on the downstream cylinder, they undergo
considerable deformation and merge with the shear flow developing close to the
surface of the cylinder, and this seems to favour mode A instability. Lastly, the wake
formed after the downstream cylinder consists of strong large vortices that interact
vigorously at a certain distance downstream, provoking further deformation of the
vortex cores and strengthening the mode A contours, as illustrated in figure 29.

Figure 30 shows the unstable mode streamwise vorticity contours for the high
wavenumber instability. We observed that the instability has the same nature as
mode B, with the same symmetry, and a similar wavenumber and critical Reynolds
number. Furthermore, the streamwise vorticity is concentrated in the shear layers that
link the vortex cores. Unlike mode A, mode B instability gets weaker when it reaches
the downstream cylinder and is absent in the region of vortex interaction in the far
wake. This suggests that mode B instability in its linear stage is concentrated in and
strongly depends on the shear layers that link the vortex cores. Since the shedding
from the downstream cylinder is triggered by the vortices impinging on it, and not by
the interaction between the two opposite shear layers as happens in the near wake
of the upstream cylinder, the shear layers are much weaker in the far wake. This is
also consistent with most of (if not all) previously proposed physical mechanisms for
the origin of mode B (see e.g. Brede, Eckelmann & Rockwell 1996; Williamson 1996;
Ryan, Thompson & Hourigan 2005), all of those have stated that mode B instability
originates and develops in the shear layers.

5.4.2. Nonlinear analysis

The nonlinear analysis of the bifurcations that were observed for Lx/D = 5 faced
an additional difficulty, because the interaction of the detached vortices with the
downstream cylinder and the interaction between the vortices in the far wake made
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Figure 31. Results for three-dimensional nonlinear simulations of configuration Lx/D = 5.0,
showing the growth and saturation of the perturbation amplitude and the growth predicted
by linear stability analysis. The x-axis is non-dimensional time: (a) displays the evolution of
mode A, at Re = 185 and βD =1.66 (Lz/D = 3.785); (b) displays the evolution of mode B, at
Re = 278 and βD = 7.57 (Lz/D = 0.83).
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Figure 32. Bifurcation diagrams for configuration Lx/D = 5, showing a subcritical bifurcation
for mode A (a) and a supercritical bifurcation for mode B (b); © – results for increasing
Reynolds number, � – results for decreasing Reynolds number.

the two-dimensional flow non-periodic outside the near wake of the upstream cylinder.
As a result, the perturbation energy evolution curves were not smooth, as can be seen
in figure 31, and the coefficients of the Landau equation could not be obtained from
the graphs of d log|A|/d t versus |A|2.

However, the character of the bifurcations for modes A and B can be inferred from
the bifurcation diagrams in figure 32, which display the amplitude squared of the
perturbation at Reynolds numbers in the vicinity of the critical value for transition.
For mode A, the results in figure 32(a) show hysteretical behaviour, which is a sign
of subcritical bifurcation. In contrast, the results obtained for mode B, displayed in
figure 32(b), show a diagram typical of a supercritical bifurcation, with no hysteresis
and the values of the amplitude squared of the perturbation following a straight line
after the bifurcation. Therefore, the nonlinear characteristics of the bifurcations for
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Figure 33. z vorticity iso-lines and x vorticity contours at xy planes showing the saturated state
of the nonlinear perturbation evolution for modes A and B, Lx/D = 5. Non-dimensional values
of z vorticity vary from –2.2 (dashed lines) to 2.2 (continuous lines) and non-dimensional values
of x vorticity vary from –1.1 (light contours) to 1.1 (dark contours). (a) Mode A: Re = 185,
βD = 1.660 (Lz/D = 3.785). Slice at z = 0.85. (b) Mode B: Re = 278, βD = 7.57 (Lz/D =0.83).
Slice at z = 0.2.

modes A and B observed for tandem arrangements with large separations are the
same as those observed in the flow around a single cylinder (Henderson 1997).

Another interesting aspect of the nonlinear evolution of the perturbation can be
seen in the graphs displayed in figure 31. There is a remarkable difference between
the behaviour of the amplitudes of modes A and B when they reach the saturation
level. While the energy associated to mode A reaches an approximately steady level
at saturation, mode B shows large oscillations around a fixed mean value. The
reasons for these behaviours can be understood by looking at the contour plots
of these saturated states in figure 33. For mode A (figure 33a), the vortex cores
become structures with strong three-dimensional characteristics due to the action
of the instability in these regions. As a consequence, the vorticity in the spanwise
direction becomes weaker and the correlation of the flow in the spanwise direction
smaller. This hinders the interaction between the vortices in the far wake of the two-
dimensional simulations at the same Reynolds numbers (see the iso-lines of figure 29).
Interestingly, this results in a conspicuously regular wake which can be observed in
the three-dimensional simulations, and this regularity is reflected in the steady level
of energy of the saturated perturbation observed in figure 31(a). For mode B, on the
other hand, even after the perturbation reaches saturation, the vortex cores in the far
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Figure 34. Variation of the critical Reynolds numbers (a) and respective perturbation
wavenumbers (b) with the centre-to-centre separation for modes T1 (�), T2 (�), T3 (�),
A (�) and B (×). Mode T1 bifurcates from shedding regime SG, modes T2 and T3 from
shedding regime AG and modes A and B from shedding regime WG.

wake are approximately two-dimensional, because the instability evolves and remains
restricted to the shear layers that link the cores, (see figure 33b). Therefore, the cores
have spanwise vorticity strong enough to sustain the interaction and merging that
occurs in the far wake, resulting in a chaotic flow. This irregular behaviour is also
displayed in the perturbation energy plotted in figure 31(b).

6. Discussion
6.1. Dependence of the critical Reynolds number and unstable mode wavenumber on

the centre-to-centre separation

In order to present a more complete picture of how the onset of the three-dimensional
wake instabilities varied according to the cylinder separations, the critical Reynolds
numbers and respective perturbation wavenumbers of additional configurations were
calculated and are plotted in figure 34. Due to the hysteresis in the transition between
the base flow shedding regimes AG and WG, it is possible to observe two different
transition scenarios in the range 3 � Lx/D � 4, depending on how the base flow
was obtained. The mode T3 curve refers to base flows obtained by restarting the
simulations from lower Reynolds numbers results, so the base flow shedding regime
was AG. In contrast, the curves of modes A and B in this separation range refer
to base flows obtained by restarting the simulations from higher Reynolds number
simulations, resulting in shedding regimes WG. Hysteresis was also observed in the
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transition between the shedding regimes SG and AG. However, it was not possible
to obtain the bifurcation points of flows with regime AG for Lx/D � 1.5, because
the critical Reynolds number was not inside the range for which this shedding
regime exists for these configurations. The same applies for flows with regime SG
for Lx/D � 1.7. The flow around the configuration Lx/D = 1.6 was very unstable,
constantly shifting the shedding regime between SG and AG, rendering the calculation
of any bifurcation point impracticable.

For configurations with shedding regime SG, whose secondary instability is
mode T1, the critical Reynolds number increased with increasing separation. A
possible explanation for this behaviour is that when the separation is increased, the
shear layers become more elongated and more vorticity remains trapped in the gap
between the cylinders. Consequently, the shear layers will be less energetic at the
formation region, where the three-dimensional instabilities originate.

When the separation was increased further, the shedding regime became AG and the
first three-dimensional instability was mode T2. For such flows, the critical Reynolds
number decreased for increasing separation. This decrease seems to be caused by
the fact that the vortex formation region approaches the downstream cylinder for
increasing separations; hence the backflow zone between the cylinder and the vortex
formation region becomes more compact. As discussed in § 5.2.3, this backflow zone
is where the centrifugal instability takes place. When this zone is more compact, the
flow in there is likely to be subjected to higher curvatures and decelerations, thus
facilitating the initiation of the instability.

For separations which are even larger, although not so large as to lead to a change of
base flow shedding regime, the three-dimensional instability modifies to mode T3. For
this mode, the critical Reynolds number initially decreases for increasing separation,
and then slightly increases for the separations in the range of transition between
shedding modes AG and WG. Considering that the instability originates in the gap
between the cylinders, the decrease in the critical Reynolds number for separations
smaller than those in the transition range is not surprising, since more vorticity remains
in the interstitial region if the separation is increased, making the vortices stronger
and larger in this region. This also explains why the unstable mode wavenumber
decreases for mode T3, since the mode wavelength scales with the size of the
cores.

For flows in shedding regime WG, the results displayed in figure 34(a) confirm
that for small Lx/D within this range, mode A bifurcates earlier in terms of
Reynolds number than it does for the isolated cylinder, and mode B bifurcates later.
These results reinforce the arguments put forwards in § 5.4 regarding the physical
mechanisms of these modes. If the separation is increased, the values of critical
Reynolds number for modes A and B quickly converge to those obtained in the flow
around an isolated cylinder, and for Lx/D � 10 there are no significant differences in
the critical Reynolds numbers and perturbation wavenumber at the onset between the
results obtained for the single cylinder and those obtained for tandem arrangements,
within 1 % tolerance. The unstable mode wavenumbers are also very close to those
of the isolated cylinder for separations larger than those in the drag inversion range.

The stability analysis results regarding the critical Reynolds number for flows in
regimes SG and AG clarify the conclusions of Deng et al. (2006). Deng et al. stated
that the transition to three-dimensional flow in the wake arose later in terms of
Reynolds number in comparison to the single cylinder case, when the separation
between the cylinders was less than the separation at which the drag inversion occurs.
The same was observed by Papaioannou et al. (2006), who also noticed that for
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separations larger than the drag inversion spacing, the downstream cylinder had a
destabilizing effect. This is in line with the stability results presented here, since the
critical Reynolds number for mode A was lower for the tandem arrangements with
shedding regime WG than for a single cylinder.

6.2. Equivalence of modes based on the physical mechanism

Secondary instabilities in the wake of flows around bluff bodies have been widely
studied (Barkley & Henderson 1996; Sheard, Thompson & Hourigan 2003; Blackburn
et al. 2005; Carmo et al. 2008 and others). Since these flows have many points in
common, it is worth investigating whether any observed new mode is a manifestation
of a previously studied instability. This is not a trivial exercise, because the similarities
between modes observed in the wakes of distinct configurations may be obscured by
the differences in the base flows. The common ground that should be used for this
kind of comparison is the physical mechanism that initiates the instabilities. In the
cases presented in this paper, it appears that mode T1 can be understood as a
manifestation of mode B and mode T3 as a manifestation of mode A. It was not
possible to relate mode T2 to any previously published mode known to the authors,
apart from the three-dimensional mode found by Barkley et al. (2002) in the flow
over a backward-facing step .

When comparing mode T1 to mode B, we have to take into account that the
physical mechanism responsible for mode B is still a matter of controversy. While
some researchers advocate that this mode stems from a centrifugal instability (Brede
et al. 1996; Blackburn & Lopez 2003; Ryan et al. 2005), others suggest that mode B
originates from a hyperbolic instability (Williamson 1996; Leweke & Williamson
1998b). In fact, it is extremely difficult to distinguish one mechanism from the other
because of the topology of the flow in the near wake: there is a hyperbolic flow
region in the vicinity of a vortex. A hyperbolic region has a stagnation point in its
middle. The presence of a stagnation point close to a vortex implies that the angular
momentum will decay towards this stagnation point, and this is favourable to the
onset of centrifugal instability. Therefore, the initiation of an unstable mode in this
region is likely to be interpreted as a manifestation of either of these instabilities.

The mechanism we observed for mode T1 has many points in common with that
suggested by Williamson (1996) and Leweke & Williamson (1998b) to explain the
origin and sustainment of mode B. The only significant difference is that we could not
identify any ‘imprinting’ and amalgamation mechanism in line with that proposed
by Williamson (1996) to explain the symmetry of the mode. Instead, we observed
that the streamwise vorticity was advected by the base flow from one side of the
wake to the opposite side and upstream. This was followed by an amplification of
streamwise vorticity due to vortex stretching in another region of hyperbolic flow.
This mechanism is satisfactorily supported by the perturbation vorticity equations
(2.6) and (2.7). In addition, it also explains the experimental observations by Brede
et al. (1996), who reported that mode B showed simply connected areas of streamwise
vorticity. Given the notable number of similarities between modes T1 and B, we
contend that these modes are indeed the same.

Mode A is proposed to be an instability of elliptical type (Williamson 1996;
Leweke & Williamson 1998b; Thompson et al. 2001). In addition, there are strong
arguments that support the cooperative nature of the instability, such as the
visualizations and feedback mechanism presented in Williamson (1996). In § 5.3.3,
evidence of the elliptical nature of mode T3 was presented, and the cooperative
mechanism of this instability was verified. The difference in the symmetry in relation
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to mode A can be explained using kinematic arguments. The interaction between the
two elliptical vortices happens predominantly in the cross-stream direction, whereas in
the flow around a single cylinder this interaction happens in the streamwise direction.
A different symmetry in mode A was also observed in the flow in a periodically
driven cavity (Blackburn & Lopez 2003). The kinematic argument can be used in
that case too; since the vortices are confined to the cavity and are not convected,
their interaction takes place on a line perpendicular to the symmetry plane, and this
is similar to what is observed for mode T3. In conclusion, the common characteristics
of modes T3 and A indicate that these two modes are actually the same type of
instability.

7. Conclusion
The secondary instabilities that occur in the early stages of the transition in the

wake for the flow around two identical circular cylinders in tandem arrangements
were investigated by means of linear stability analysis and three-dimensional direct
numerical simulations. The results were compared to the isolated cylinder case, and
the different scenarios observed depended fundamentally on the separation between
the cylinders.

If the separation was less than the drag inversion spacing, the downstream cylinder
had a stabilizing effect in the flow. For such cases, the three-dimensional structures
appeared later in terms of Reynolds number than for the flow around an isolated
cylinder. In addition, the topologies of the unstable modes for these configurations
were different from those observed in the flow around a single cylinder. It was shown
that for configurations at shedding regime SG, the unstable mode at the onset of the
secondary instability originated at the formation region, downstream of the leeward
cylinder. This mode, referred to as mode T1, has a topology that breaks the spatial
symmetry of the base flow, and its physical mechanism appears to be associated to a
hyperbolic instability, indicating that mode T1 may actually be a manifestation of the
single cylinder mode B. For slightly larger separations, the shedding regime changed
to AG and a different unstable mode, named mode T2, was observed. Mode T2 had
its origin at the base of the downstream cylinder, upstream of the vortex formation
region. A centrifugal instability in this region seems to give rise to this mode. Like the
single cylinder mode A, mode T2 wake topology keeps the in-plane spatial symmetry
observed in the base flow. If the separation is increased a little more, but not so
much as to change the base flow shedding regime, a new unstable mode (mode T3)
is initiated at the interstitial region. Like modes B and T1, mode T3 also breaks
the spatial symmetry of the base flow. Some of the mode attributes suggest that the
underlying physical mechanism is a cooperative elliptical instability, so mode T3 could
be interpreted as a manifestation of the single cylinder mode A, despite the different
symmetries of the two. This difference can be explained by the distinct kinematics in
each of the base flows.

On the other hand, if the separation was greater than the drag inversion spacing
(shedding regime WG), the initial stages of the transition in the wake occurred in a
similar way to that of the isolated cylinder. The first instability, mode A, arose earlier in
Reynolds number terms when compared to the single cylinder case, and it is therefore
concluded that the downstream cylinder has a destabilizing effect on the flow for
separations larger than the drag inversion spacing. Curiously, the downstream cylinder
had the opposite effect on mode B instability, delaying its bifurcation, as predicted
by linear stability analysis. However, these different behaviours are consistent with
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previously proposed physical mechanisms for the origin and sustainment of these
modes.

This comprehensive study shows the different ways in which the early stages
of the transition scenario respond to flow interference. A full characterization of
the secondary instabilities and an evaluation of the relationship between the early
stages of the wake transition and the centre-to-centre distance between the cylinders
is presented in this paper; these are fundamental contributions towards a better
understanding of the effects of wake interference in the flow around bluff bodies.
The level of complexity of the changes in the early stages of the wake transition
should discourage any extrapolation from isolated body results to multiple body
configurations. We believe that the results and conclusions presented here can be
used as guides in the careful assessment of the flow interference effects that are
necessary prior to scientific or engineering work on flows around multiple bodies.
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